مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

نویسندگان
چکیده

ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °c 25 تا °c 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی قرار گرفت. نتایج خشک کردن اسمزی نشان داد که هر سه پارامتر ذکر شده بر کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد موثر هستند. با افزایش زمان فرآیند اسمزی از 30 دقیقه به 120 دقیقه، درصد کاهش وزن، درصد کاهش آب و مقدار جذب مواد جامد به ترتیب 78/21 ، 64/50 و 31/157 درصد افزایش می یابند. در این پژوهش همچنین مدل سازی فرآیند به روش الگوریتم ژنتیک - شبکه عصبی مصنوعی با 3 ورودی و 3 خروجی جهت پیشگویی کاهش وزن، کاهش آب و جذب مواد جامد انجام شد. نتایج مدل سازی به روش الگوریتم ژنتیک - شبکه عصبی مصنوعی نشان داد شبکه ای با تعداد 14 نرون در یک لایه پنهان و با استفاده از تابع فعال سازی تانژانت هیپربولیک می توان به خوبی درصد کاهش وزن (98/0r=)، درصد کاهش آب (97/0r=) و مقدار جذب مواد جامد (96/0r=) در طی فرآیند خشک کردن اسمزی زردآلو را پیشگویی نمود. نتایج آنالیز حساسیت توسط شبکه عصبی بهینه، دمای محلول اسمزی را به عنوان موثرترین عامل در کنترل کاهش وزن، کاهش آب و جذب مواد جامد از قطعات زردآلو نشان داد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی فرآیند خشک کردن بادمجان توسط سامانه مادون قرمز به روش الگوریتم ژنتیک-شبکه عصبی مصنوعی

در این مطالعه رفتار خشک‌کردن لایه‌نازک ورقه‌های بادمجان در یک خشک‌کن مادون‌قرمز (IR) بررسی گردید. اثر توان لامپ مادون‌قرمز (150، 250 و 375 وات)، فاصله نمونه از لامپ (5، 10 و 15 سانتی‌متر)، ضخامت نمونه‌ها (5/0 و 1 سانتی‌متر) و زمان خشک‌کردن بر خشک شدن ورقه‌های بادمجان موردبررسی قرار گرفت. نتایج خشک‌کردن بادمجان به روش مادون‌قرمز نشان‌داد با افزایش توان لامپ و کاهش فاصله نمونه‌ها از منبع حرارتی، ...

متن کامل

مدل‌سازی فرایند تبدیل خشک متان به‌کمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

متن کامل

مدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک

دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...

متن کامل

خشک کردن برگه‌های زردآلو با استفاده از فرآیند آبگیری اسمزی (محلول‌های ساکارز- نمک)

فرآیند خشک کردن اسمزی، به معنی استفاده از محلول هیپرتونیک (اسمزی) جهت کاهش آب در محصول می­باشد. هدف از این تحقیق، بررسی غلظت­های متفاوت محلول اسمزی، دماهای متفاوت و مدت زمان تیماردهی برای خشک کردن زردآلو و انتخاب بهترین تیمار بود. ابتدا برای انتخاب بهترین تیمار اسمزی جهت تولید برگه­های زردآلوی خشک شده از میزان آب خارج شده و مواد جامد جذب شده در طی 5 ساعت و در زمان­های 1، 3 و 5 ساعت توسط 3محلول ...

متن کامل

تعیین ویژگی‌های مؤثر بر پایداری ساختمان خاک‌های مناطق خشک با استفاده از الگوریتم ترکیبی ژنتیک-شبکه عصبی مصنوعی

پایداری خاکدانه­ها به‌عنوان یکی از کلیدی­ترین شاخص­های کیفیت فیزیکی خاک، بیان‌گر قدرت نسبی خاک در برابر نیروهای فرساینده و تخریب مکانیکی است. در این پژوهش، به‌منظور شناسایی یک زیرمجموعه از مهم‌ترین ویژگی‌های مؤثر بر شاخص میانگین وزنی قطر خاکدانه‌ها (MWD)، از الگوریتم ترکیبی ژنتیک-شبکه عصبی مصنوعی (GA-ANN) استفاده گردید. افزون بر آن، قابلیت شبکه­های عصبی مصنوعی (ANNs) و رگرسیون چند متغیره خطی (M...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
نوآوری در علوم و فناوری غذایی

جلد ۷، شماره ۱، صفحات ۶۵-۷۶

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023